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Experimentation and theory are used to study the long-term dynamics of a two-
dimensional density current flowing into a two-layer stratified basin. When the initial
Richardson number, Riinρ , characterizing the ratio of the background stratification to

the buoyancy flux of the density current, is less than the critical value of Ri∗ρ =21−27,
it is found that the density current penetrates the stratified interface. This result is
ostensibly independent of slope for angles between 30◦ and 90◦. If the current does
not initially penetrate the interface, then it slowly increases the density of the top
layer until the interfacial density difference is reduced sufficiently to drive penetration.
The time scale for this to occur, tp = (Riinρ − Ri∗ρ)L/B1/3, is explicitly a function of the

buoyancy flux B and the length of the basin L. The initial Richardson number, Riinρ ,
is a function of depth, the initial reduced gravity of the interface and a weak function
of slope angle. In the absence of initial penetration for very steep slopes of 75◦ and
90◦, we observe that penetrative convection at the interface leads to significant local
entrainment. In consequence, the top layer thickens and the interfacial entrainment
rate increases as the fifth power of the interfacial Froude number. In contrast, such
a process is not observed at comparable interfacial Froude numbers on lower slopes
of 30◦, 45◦ and 60◦, thereby demonstrating the important role of impact angle on
penetrative convection. We attribute the increased interfacial entrainment by the steep
density currents as the result of the transition from an undular bore to a turbulent
hydraulic jump at the point where the density current intrudes. We discuss the
applicability of the observed circulation to the stability of the Arctic halocline where
we find 0.56 � tp � 1.2 years for a range of contemporary oceanographic conditions.

1. Introduction
Cooling in the shallow shelf regions of lakes and polar seas, or evaporation in

marginal seas, leads to the formation of dense water masses that become cascading
density currents. In many cases, the source water in such currents is denser than the
bottom waters of the basin into which it flows, but mixing due to shear instabilities
dilutes the current so that it can intrude at mid-depth, as is the case for the
Mediterranean outflow (Baringer & Price 1999). In stratified lakes and reservoirs,
inflow of a cold river or differential cooling in shallow regions also results in the
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Figure 1. A density current flowing down a slope with velocity w will dilute owing to turbulent
entrainment of the lighter fluid above. If there has been sufficient dilution, then the density
current will initially spread out along the interface as a thin intrusion, similar to the experiments
of Monaghan et al. (1999). The subsequent input of fluid deepens the pool of dense water that
forms above the interface, as previously described by Wells & Wettlaufer (2005). The upper
layer continues to become more dense, decreasing the interlayer buoyancy contrast until the
density current penetrates through the interface. After penetration, the volume flux out of the
upper layer thickens the lower layer.

formation of density currents. The stratification of such fresh-water basins can often be
approximated by a two-layer stratification, with a well-mixed warm surface layer (the
‘epilimnion’) separated by a sharp thermocline from the deeper cold waters (the weakly
stratified ‘hypolimnion’). When a density current enters such a two-layer stratification,
there are two possible outcomes: if the impinging current is lighter than the lower
layer then an intrusion forms on the thermocline as sketched in figure 1; otherwise,
it will intrude at the very base of the reservoir. These two possibilities have long been
recognized by limnologists who use the terminology of an ‘interflow’ for the subsurface
intrusion, and ‘underflow’ to refer to a density current spreading along the base
(Fischer et al. 1979; Hebbert et al. 1979; Imberger & Hamblin 1982). An important
application of our work concerns the buoyancy forcing in the Arctic oceans driven
by seasonal freezing and melting. The rejection of brine from growing sea-ice on the
shallow shelf regions of the Arctic ocean leads to sinking density currents that interact
with the Arctic halocline, and it is important to know how stable this circulation
pattern is to possible changes in either the buoyancy forcing or the halocline strength.

The layer into which the density current intrudes is a function of the initial
buoyancy flux, the density jump across the thermocline and how much mixing occurs
on the slope before it reaches the depth of the thermocline. The level at which a
buoyant plume intrudes in a continuously stratified environment was first quantified
in terms of entrainment rates in the seminal work of Morton, Taylor & Turner (1956).
They found that in a linear stratification, the height of rise of a point-source plume
is a simple function of the initial buoyancy flux and ambient stratification. Briggs
(1969) confirmed the validity of the Morton et al. (1956) scaling over five orders of
magnitude: from the laboratory scale to large oil fires. The central assumption in
this theory is the ‘entrainment hypothesis’ of G. I. Taylor (1948), whereby the rate at
which the rising fluid turbulently entrains surrounding ambient fluid is assumed to be
linearly proportional to the mean vertical (axial) velocity, w, which is often expressed
in terms of an entrainment ratio

E = ue/w, (1)
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where ue is the entrainment velocity normal to the current. For a plume, the
entrainment ratio is constant and equal to 0.1, but for a density current the
entrainment ratio decreases as the stability of the current increases. The use
and development of this assumption, and the distinctions between definitions and
nomenclature are discussed in detail by Turner (1986). Armed with the entrainment
assumption, Morton et al. (1956) were able to solve ordinary differential equations
for the mass, momentum and buoyancy fluxes in the case where a point source of
buoyancy enters a linearly stratified unconfined environment. The height to which a
two-dimensional buoyancy source will rise in a linear stratification was considered
by Wright & Wallace (1979) and Bush & Woods (1999), and the effect of nonlinear
stratification was investigated by Caulfield & Woods (1998). Of most relevance to the
case where a two-dimensional density current enters a two-layer stratified reservoir
are the experiments of Wallace & Sheff (1987) and Ching, Fernando & Noh (1993).

The long-term effect of a density current flowing into a confined basin will be
to increase the basin density gradually. The density current modifies the basin
stratification through the ‘filling-box’ dynamics of Baines & Turner (1969), whereby
the outflow of the plume continuously upwells and is re-entrained into the density
current. This forms a stable stratification, with a transient evolution described by
Worster & Huppert (1983). Cardoso & Woods (1993) investigated how a point-
source plume modifies a linear stratification in a confined basin. They found that
the plume initially spreads at the level predicted by Morton et al. (1956). Thereafter,
above the level of intrusion, the entrainment by the plume forced the same circulation
and stratification as the filling box model, while the level at which the plume intruded
deepened owing to entrainment by penetrative convection at the base of the plume.
The long-term dynamics of a point source of buoyancy in a confined two-layered
stratification were studied by Baines (1975) and Kumagai (1984), who showed that
the entrainment due to penetrative convection at the density interface deepens the
upper layer and thereby modifies the density distribution of the Baines & Turner
(1969) model, which has an impermeable lower boundary (see for example figure 4
of Baines 1975). If the negatively buoyant plume does not initially penetrate the
interface, then the buoyancy contrast between the two layers decreases in time by a
filling-box process in the upper layer, and the density current eventually penetrates
to the bottom of the basin. Kumagai (1984) determined the time scale over which
the buoyancy contrast is sufficiently reduced that penetration of the interface occurs.
This critical buoyancy contrast is similar to that discussed by Wallace & Sheff (1987)
and Ching et al. (1993).

There are many lakes or oceanic basins that have dynamics similar to the filling-box
model of Baines & Turner (1969). Examples where modified versions of the filling-box
model have been used include Killworth & Carmack (1979) and Hamblin & Carmack
(1978) who looked at the seasonal variation caused by a dense river inflow into the
Kamloops lakes in Canada; and Sukru, Ozsoy & Unluata (1993) who modelled the
seasonal stratification of the Marmara Sea where there is lower-layer inflow from
the Dardanelles. In a related study, Wells & Sherman (2001) examined the formation
of upwelling due to a density current in the Chaffey Reservoir in Australia. The
overturning circulation in the World’s oceans, where dense water forms and sinks at
high latitude and then upwells through the main thermocline at lower latitudes, was
described first by Stommel (1958) and by many others since then, the most recent
variants of this concept being given by Hughes & Griffiths (2006) and Wahlin &
Cenedese (2006). An assumption underlying all of these models is that the (weak)
entrainment into a density current will result in the same filling-box dynamics as the
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strongly entraining vertical plumes. The relationship between entrainment in plumes
and jets and density currents on slopes is discussed by Ellison & Turner (1959). In
their treatment of overturning circulation, Hughes & Griffiths (2006) pointed out
that the small along-slope entrainment rates into density currents on a slope can be
viewed in terms of the entrainment rate per unit height of fall, and by interpolating
the entrainment rates for slopes between 0◦ and 5◦, they found values comparable
to those for a vertical free plume. This prediction is confirmed in the laboratory
experiments of Wells & Wettlaufer (2005). Therefore, observed upwelling velocities
and density profiles driven by two-dimensional density currents in confined basins
are essentially the same as theoretical predictions for those driven by a buoyant line
source in two-dimensional filling boxes, as described Baines & Turner (1969).

In this paper, we quantify the conditions necessary for a two-dimensional density
current on a slope to penetrate through a two-layer stratification. In § 2 we use the
observations of Wells & Wettlaufer (2005) to extend the theory of Wallace & Sheff
(1987) and Ching et al. (1993) and thereby determine the critical buoyancy step
required to stop penetration of a density current as a function of the vertical distance
the density current descends and the buoyancy flux. For cases where the density
current does not initially penetrate the interface, we determine (i) the time scale tp
over which the density current reduces the buoyancy step to the critical value, and (ii)
the resulting stratification and circulation. A description of the experiment is given
in § 3.1 and observations of the circulation, the critical buoyancy step, the time scales
to penetration, and the observed entrainment at the interface are presented in § 3.2.
Finally, in § 4, we discuss applications of this to the dynamics and stability of the
Arctic halocline.

2. Theory
2.1. Interaction of plumes and density interfaces

For the case of a point-source plume, Morton et al. (1956) quantified the role of
entrainment in determining how an initially dense plume dilutes with distance from
the source. The same is the case for a two-dimensional plume or a density current.
Depending on the relative densities, a buoyant plume or density current can be
blocked by a two-layer stratification. The conditions for penetration or blockage have
been explored experimentally by studying the impingement of a two-dimensional
plume upon a sharp density interface at a depth H below the source with buoyancy
flux per unit width, B ([B] = m3 s−3) and a reduced gravity of the density step defined
as ∆12 = g(ρ2 − ρ1)/ρo, where ρ1 and ρ2 are the densities in the upper, 1, and lower,
2, layers, ρo is a reference density and g is the acceleration due to gravity (Wallace &
Sheff 1987; Noh, Fernando & Ching 1992; Ching et al. 1993). Ostensibly the same
result is found in these studies with the earlier work determining, in particular, that
the plume penetrates the density step when (H∆12)/B

2/3 < 3 and it is blocked by the
interface and spreads laterally at the depth of the interface when (H∆12)/B

2/3 > 7.8.
Ching et al. (1993) studied the conditions for a negatively buoyant line plume to
penetrate a two-layer interface based on the vertical velocity at the interface w, the
reduced gravity ∆12 and the thickness b of the plume at the density front. Together
these variables define a Richardson number,

Ri = b∆12/w
2, (2)

which can be related to a Froude number, of the flow by Ri = Fr−2. By varying
this Richardson number, Ching et al. (1993) identified different flow patterns. When
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Ri < 0.5, the plumes penetrate through the interface into the lower layer, whereas for
1 < Ri< 5, the plumes spread laterally at the interface with appreciable entrainment of
dense underlying fluid occurring at a rate that decreased with increasing Richardson
number (Ching et al. 1993, figures 9 and 10). When Ri > 10, little mixing was observed.
A subtly different form of the Richardson number was defined by Wallace & Sheff
(1987) as

Riρ ≡ ∆12H/B2/3. (3)

Whereas equation (2) can be thought of as a ratio of potential to kinetic energies, the
form of Richardson number used by Wallace & Sheff (1987) is an expression of the
density excess.

By considering the scalings for the width, velocity and density anomaly of a free
two-dimensional plume, our results and those of Wallace & Sheff (1987) and Ching
et al. (1993) can be placed in the same context. The plume scalings are

b = 2Ez, (4)

w = 2−1/3E−1/3B1/3 (5)

∆ = 21/3E−2/3B2/3z−1, (6)

with ∆ the buoyancy (reduced gravity) of the plume, z the vertical distance and E

the entrainment ratio of the plume (Morton et al. 1956; Turner 1973). Hence at the
interface where z =H , equation (3) can be combined with (4) and (5) to show that
Ri = (2E)5/3Riρ . Hence, for a given entrainment coefficient, the density and energy
criteria used by Ching et al. (1993) and that of Wallace & Sheff (1987) are equivalent.

Consider now the case when the buoyancy of the plume relative to the upper layer
is the same as the buoyancy jump across the interface and hence ∆ =∆12 ≡ ∆crit

12 , and
the plume can penetrate the interface at z = H . Whence, in terms of density we have

Riρ
crit ≡ ∆crit

12 H/B2/3 = 21/3/E2/3, (7)

and when E = 0.1 this implies that Riρ
crit = 5.8, in good agreement with that observed

by Wallace & Sheff (1987). Because Ricrit = 0.069 Riρ
crit, the observation of Noh et al.

(1992) that Ricrit =0.5, shows the experimental agreement between the energy and
density criteria for penetration.

2.2. Relationship between density currents and plumes

The relationship between the results discussed above, from vertical two-dimensional
plumes, and two-dimensional density currents on a slope is established by considering
the nature of entrainment in these two geometries. Density currents on slopes are
often characterized in terms of an overall Richardson number, Rio, which describes
the stabilizing effect of the density gradient relative to the shear as

Rio =
b∆ cos θ

w2
, (8)

for currents of thickness b, reduced gravity ∆, and mean velocity w on a slope of
angle θ (Ellison & Turner 1959; Turner 1973, 1986; Baines 2005). In the theory
of Ellison & Turner (1959), the entrainment ratio, or entrainment constant, Es , is
defined in terms of the rate of increase in the density current thickness as a function
of distance down slope, whereas for a vertical plume, the entrainment ratio is the rate
of increase in horizontal plume width as a function of depth, E. (We note here that in
the original Morton et al. (1956) theory, the entrainment constant for a vertical plume
is α and Ellison & Turner (1959) actually use the notation E for the slope-dependent
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entrainment ratio and in our previous work we followed their convention (Wells &
Wettlaufer 2005). Here we use E to describe the entrainment in vertical line or point
plumes. In the literature we find that the same variable is used to describe several types
of entrainment constant. Hence, herein we would like to make clear the distinction
between the definitions.) When bottom friction and the pressure gradient associated
with changes in b are less important than the stress associated with entrainment, mass
and momentum conservation yield Es = Rio tan θ (Turner 1973) from which it can be
seen that,

Es

sin θ
= Ri, (9)

with Ri, with the necessary changes having been made, given by equation (2).
If the one-sided nature of entrainment in a density current on a slope is related

to that of a vertical plume, then we can define an equivalent vertical entrainment
constant, which we denote as Eeq . Hughes & Griffiths (2006) showed that by making
the simple coordinate transformation from along-slope position to vertical depth, that
the two types of entrainment are simply related by

Eeq =
Es

sin θ
. (10)

Thus, the entrainment into a density current on a vertical slope is equivalent to that
into a free plume. The experiments of Ellison & Turner (1959) are consistent with
Es → 0 as the slope tends to zero, and Hughes & Griffiths (2006) assumed a linear
interpolation between the measured value at laboratory slopes, Es = 10−2 at θ = 5◦,
and the zero slope limit Es → 0. They concluded that at low slope angles, Eeq would
asymptote to 0.1, the approximate value of a vertical plume. Hence currents on small
slopes entrain at a rate (per unit height) comparable to that for a vertically falling
plume distant from boundaries. Wells & Wettlaufer (2005) have shown experimentally
that over a wide range of angles below approximately 80◦, Eeq takes a constant value
of 0.08.

For a two-dimensional gravity current on a slope, Britter & Linden (1980) showed
that the equations for the current thickness, velocity and buoyancy are almost the
same as equations (4)–(6), but with a slope dependent entrainment rate, namely,

b = Ess, (11)

w = CEs
−1/3B1/3, (12)

∆ = C−1Es
−2/3B2/3s−1, (13)

where s is the along slope distance. The factor C has been experimentally determined
by Ellison & Turner (1959) to be C = 0.2 for slopes between 10◦ and 90◦. We can
determine a condition similar to equation (7) by using the equivalent entrainment
rate Eeq = 0.08 and the vertical depth of the descent of the density current H = s sin θ .
Then the critical value becomes

Ri∗ρ ≡ ∆crit
12 H/B2/3 = C−1E−2/3

eq (sin θ)1/3. (14)

Considering the range of θ from 30◦ to 90◦ used in our experiments, the right-hand
side of equation (14) shows that 21 � Ri∗ρ � 27, and hence the critical value for
penetration is a very weak function of slope. Because of the slightly slower velocity
of density currents relative to free plumes, and the fact that they entrain on only one
side, it is the case that for the same buoyancy flux B there is less dilution with depth.
Thus for the same H , the critical buoyancy step at the interface must be greater than



Long-term circulation in a two-layer stratified basin 43

that of the free plume case studied by Wallace & Sheff (1987), Noh et al. (1992) and
Ching et al. (1993). We describe a test of these conclusions for density currents on
slopes between 30◦ and 90◦ in § 3.2.

2.3. Density and velocity profiles of the surroundings

If the density current does not penetrate the interface, then the upper layer evolves
by the filling-box mechanism. The conservation equations for volume, momentum
and density deficiency in a two-dimensional line plume are discussed in detail in
Baines & Turner (1969) and Wells & Wettlaufer (2005). The important results for the
present discussion are the form of the upwelling velocity U and the environmental
density ∆o(z). It is observed that the mean velocity of a two-dimensional steady
turbulent density current is constant (Ellison & Turner 1959) and hence for a constant
entrainment coefficient, the thickness of the current grows linearly with depth as
b = Ez. The equation of continuity is that −LU = bw where L is the basin length,
which is constant with depth in the following. This leads to an upwelling velocity that
is also a linear function of depth; U = −zEw/L. Such an upwelling velocity implies
that the position ζ of density fronts for a filling box produced by a density current
on a slope varies with time as

ζ = exp(−τ ), (15)

where the non-dimensional time is defined through t = 22/3B−1/3E−2/3
eq Lτ , in which we

have used the equivalent entrainment constant Eeq , and the non-dimensional depth
is given by ζ = z/Ĥ . Here, Ĥ is the slowly varying depth of the stratified region,
which is initially the same as the depth H of the line-source above the interface. The
upper-layer depth Ĥ may increase with time owing to interfacial entrainment, but
if ∂Ĥ/∂t � U , then equation (15) holds to a good approximation. We verify this
condition experimentally.

In our experiments, the density of the environment changes only because of vertical
advection U , so that

∂∆o

∂t
= −U (z)

∂∆o

∂z
. (16)

For times long in comparison to the time at which the first front has reached the top
of the basin, as in the original Baines & Turner (1969) model, the asymptotic state is
reached in which the environmental density slowly increases with time, but the shape
of the density profile is unchanged. This environmental density profile is achieved by
combining a linear upwelling velocity with equation (16) to yield

∆o = ln(ζ ) + τ, (17)

where the dimensionless buoyancy of the environment is defined through
∆o = 2−1/3B2/3

o E−2/3
eq Ĥ −1∆o(ζ, τ ). The time constant in equation (17) is evaluated

using the fact that the total buoyancy in the tank increases at a rate determined by
buoyancy flux normalized by tank volume.

2.4. Deepening of the upper layer

The interface between the upper and lower layers in figure 1 is the moving boundary
through which the entrainment of dense lower-layer fluid takes place, as discussed
by Baines (1975) and Kumagai (1984). As this interface deepens, local interfacial
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entrainment increases the density of the fluid in the outflow. The entrainment velocity
U ∗ is defined by

U ∗ =
∂Ĥ

∂t
. (18)

Baines (1975) and Kumagai (1984), described the entrainment velocity U ∗ at such
a sharp two-layer interface in terms of a Froude number of the density interface,
which is a function of the local thickness b, velocity w and reduced gravity ∆ of
the outflowing fluid. In order to make contact with their work and others, we use
the same notation but note that this is equivalent to a characterization in terms of a
Richardson number as described in equation (2), namely, Frint = Ri−1/2. Hence, if L

is the length of the tank,

LU ∗

bw
= f (Frint ), (19)

and equation (18) can be rewritten to describe the increase in thickness of the upper
layer as

∂Ĥ

∂t
=

bw

L
f (Frint ). (20)

In experiments with point-source plumes, Baines (1975) found the entrainment
volume flux varied as Fr3

int . Kumagai (1984) found the same result at low Froude
numbers, but showed that the entrainment rate approached a constant as Frint → 1.
In experiments where a line source of buoyancy impinged upon a two-layer interface,
Ching et al. (1993) measured the entrainment velocity for a limited number of data
points and found a power law of the form LU ∗/wb = 0.6Fr2

int for 0.1 <Frint < 1. The
critical Froude (and Richardson) number implied by (7) provides an upper bound on
the entrainment rate. Using continuity (−LU = bw) and the results of Ching et al.
(1993), the ratio of the entrainment velocity to the filling box upwelling velocity varies
as U ∗/U ∝ Fr2

int =Ri−1. This ratio is very small for small Frint (large Ri), justifying the
assumption that the interface depth can be considered constant over the time during
which the density and velocity profiles evolve in the upper layer. The Froude number
for penetrative convection at a density interface is defined as Frint = wz/

√
bx∆12,

where wz is the vertical component of the velocity and bx is the horizontal thickness.
The scaling of equation (9) gives the horizontal thickness of the density current
as bx = Eeq sin θ−1H , and the vertical component of the velocity of the density
current as wz =CE−1/3

eq B1/3 sin θ2/3. Hence, the Froude number at an interface of
depth Ĥ is,

Frint = C(sin θ)5/6E1/6
eq

B1/3√
Ĥ∆12

, (21)

where initially Frint = C(sin θ)5/6E1/6
eq × (Riinρ )−2.

The total buoyancy in the upper layer, 1, owing to input of buoyancy from the
plume and from the additional entrainment at the base, is

∫ Ĥ

o

L
∂∆1

∂t
dt = B + B∗, (22)

where B∗ =L∆12U
∗ is the additional buoyancy flux per unit length owing to mixing

across the interface. If the density is changing at the same rate at all levels within
the upper layer (as assumed in Baines & Turner 1969; Wells & Wettlaufer 2005)
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then
∂∆1

∂t
=

B + B∗

LĤ
. (23)

Integrating (23) and re-arranging gives

∆1(t) =
1

1 − ∂lnĤ /∂ln t

Bt

LĤ
+

∆in
12

Ĥ (t)

∂Ĥ

∂t
t. (24)

When there is no deepening of the upper layer owing to entrainment, Ĥ = H and this
reduces to ∆1(t) = Bt/LH . Using (24) and the experimentally observed ∂Ĥ/∂t , we
can estimate (a) the change in density of the upper layer, (b) the Froude number and
(c) the entrainment flux B∗ = L∆12U

∗. In equation (24), B is independent of time, but
due to mixing across the interface, the buoyancy step ∆12 decreases with time, and
thus B∗ is predicted to increase with time. The depth also increases with time owing to
the entrainment by penetrative convection at the interface. For the simple case where
B∗ =0, the depth Ĥ is constant and we can integrate equation (23) to determine the
time, tp , over which the initial reduced gravity ∆in

12 is decreased to that of the critical
buoyancy step ∆crit

12 defined by equation (14). Whence, we find the penetration time
to be

tp =

(
Riinρ − Ri∗ρ

)
L

B1/3
. (25)

For cases where there is significant entrainment at the interface, the fact that both B∗

and the upper-layer depth increase with time, means that the ratio on the right-hand
side of equation (23) remains approximately constant. We will show later (see figure 4)
that equation (25) is a very good estimate for the time to penetration, even for cases
where significant deepening occurs, and provides a very useful model for the Arctic
halocline.

The vertical distribution of density in the upper layer is given by

∂∆1

∂z
=

B + B∗

bwĤ
. (26)

The velocity w, and thickness b of the density current or plume are not affected by
the penetrative convection at the interface. If we again assume that the rate of change
of Ĥ is much smaller than the upwelling filling box velocity, then the density profile
has the same shape as (17), but the magnitude is increased by the factor 1 + B∗/B .
Our results in § 3.2 show that the maximum values of 1 + B∗/B are 1.25. The energy
arguments of Manins & Turner (1978) imply that the ratio of buoyancy fluxes B∗/B
must be less than 0.5, as found by Kumagai (1984).

3. Laboratory experiments
3.1. Description of experiment

A total of 22 experiments were performed in a geometry similar to that shown
in figure 1. The tank has a length L = 244 cm, width of 15 cm and total depth of
45 cm. A ramp down which the density currents flow is set at one end, and the
slope is set to 30◦, 45◦, 60◦, 75◦ or 90◦. Owing to the length of the tank, the sloping
boundaries contribute little to the total available volume. We prepare a two-layer
salt stratification with a lower layer of thickness 17 cm and an upper fresher layer
of thickness 22 cm. The initial salinity difference is determined using a refractometer.
This fixes the initial buoyancy step ∆in

12. Density currents are produced by pumping
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Run Slope ∆in
12 cm s−2 Riinρ tp , theory (s) tp , observed (s)

1 45◦ 7.54 22.83 0 0
2 45◦ 12.54 37.96 991–1535 1230–1675
3 45◦ 20.97 63.46 3300–3842 2500–3000
4 45◦ 27.34 82.74 5044–5587 3750–4500
5 45◦ 35.08 106.17 7163–7708 6080–7485
6 60◦ 6.95 21.05 0–5 0–100
7 60◦ 12.39 37.37 938–1481 1630–2790
8 60◦ 20.26 61.39 3112–3655 2500–3200
9 60◦ 26.65 80.67 4857–5400 3500–4000

10 75◦ 39.39 119.22 8346–8889 7000–8000
11 75◦ 14.014 42.41 1394–1937 1680–2010
12 75◦ 20.972 63.46 3300–3843 3200–4000
13 75◦ 9.11 27.58 52–595 560–870
14 90◦ 39.39 119.22 8346–8889 8270–8600
15 90◦ 15.09 45.67 1689–2232 2300–2500
16 90◦ 8.33 25.20 0–380 720–1150
17 Free plume 8.33 25.20 0–380 NA
18 Free plume 2.45 7.41 0 NA
19 Free plume 25.18 76.22 4454–4997 NA
20 Free plume 19.21 50.71 2146–2689 NA
21 30◦ 25.18 76.22 4454–4997 3000–4000
22 30◦ 15.38 46.56 1770–2313 1500–2500

Table 1. Experimental parameters. For runs 17–20, the entrainment at the interface deepened
the upper layer to the base of the tank before the plume penetrated through the interface, and
hence no experimental tp are given. Significant increases in the depth of the upper layer (greater
than 1 cm) were seen only in runs 10–20. In calculating the range of times to penetration tp
from (25), we use the measured value of Riinρ , a value of Ri∗ρ of 21 and 27, L = 244 cm and
B =19.6 cm3s−3. A discussion of the range of observed tp is given at the end of § 3.2.

a saturated saline solution of density ρ = 1.199 g cm−3 at a rate of Q = 1.5 cm3 s−1

through a two-dimensional manifold located 1 cm above the slope, and at a height of
22 cm above the interface between the fresh upper layer and the lower saline layer.
The buoyancy flux per unit width is then B = 19.6 cm3 s−3. Both the buoyancy flux B

and the height H of the line source above the density interface are held constant, so
that Ri∗ρ described by equation (14) is experimentally controlled by ∆crit

12 . We predict a

range of Ri∗ρ = 21 − 27. The initial buoyancy contrast between the two layers is varied

so that the ratio Riinρ /Ri∗ρ , is varied from a value of unity to five. The experimental
parameters are shown in table 1.

The principal quantitative observation is the time at which the density current
penetrates the density interface. By periodically introducing dyes of different colours
into the density current, we monitor (a) the depth of the outflow and (b) the position
of the initial density front between the two layers as a function of time (figure 2).
Digital photographs of the dye layers are taken every 10 s, from which we extract
vertical image slices. These slices are stacked temporally, and the time history of the
various stratified dye layers is shown in figure 3. The trajectories of dye lines in the
time slices allow the vertical velocities within the tank to be quantified, in a similar
manner to Wells & Wettlaufer (2005).

3.2. Experimental results

A typical experiment (run 5) is shown in figure 2, displaying the region of the tank
within 90 cm of the dense current. The slope is 45◦ and the initial buoyancy step is
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very large, so that Riinρ is almost five times the critical value of Ri∗ρ = 21. Hence, in
figure 2(a), we see that the density current initially spreads out along the interface as
a thin intrusion. The subsequent input of fluid deepens the pool of dense water that
forms above the interface (figure 2b), as previously described by Wells & Wettlaufer
(2005). Note that the depth of the upper layer does not change between these two
photographs, indicating that no penetrative convection has occurred where the plume
impacts the buoyancy step. The input of dense fluid ensures that the upper layer
continues to become more dense, so that the buoyancy contrast between the two
layers decreases, until the density current penetrates through the interface to the base
of the tank (figure 2c). After penetration of the interface, there is a volume flux out
of the upper layer into the lower layer so that the latter thickens and the upper layer
thins (figure 2d).

In figure 3, we plot time slices from three experiments that delineate the three
possible outcomes of a density current impacting a stratified interface: (a) the density
current initially penetrates the interface; (b) the density current penetrates after a
period of time, before which there is no penetrative convection at the interface
between the two layers or (c) there is strong penetrative convection at the interface
and the upper layer deepens with time. In figure 3(a), we plot the time slice of run 1,
in which Riinρ = 22.83 ∼ Ri∗ρ = 21 and hence the density current almost immediately
penetrates to the base of the tank and forces an upwelling within the lower layer. This
is seen in the time slice by the rising interface that was originally located at a depth
of 23 cm. Above this rising interface some of the dyed fluid is seen to detrain into the
upper layer, while most of the density current penetrates to the base. In figure 3(b), we
plot the time slice of run 5, for which individual photographs are shown in figure 2.
As discussed above, this density current initially does not penetrate through the
interface, and hence in the upper layer, we see the distinctive upwelling curves due
to the filling-box process, described by ζ =exp(−τ ) in equation (15). The interface
between the upper and lower layers does not change depth with time, indicating that
there is no penetrative convection at the interface. Starting at approximately 4000 s
through to 5500 s we see that a small fraction of dense fluid leaks through the interface
into the lower layer, before the bulk of the dense current intrudes. This is because the
current is not of uniform density, so the densest water parcels can penetrate before
the bulk of the current. The density current penetrates through the interface, without
detraining in the top layer, between 6080 and 7485 s, where the interface starts to
upwell strongly. Because of the length of the period during which the density current
detrains into both the top and bottom layers, it is slightly subjective what value of tp
to plot in figure 4; our decision to base this time scale on the time at which all of
the dense current intrudes into the bottom layer may lead to a small but systematic
overestimation of tp . In figure 3(c), we plot the time slice of run 20, which is the
case of a free plume. The lower interface deepens with time owing to penetrative
convection beneath the plume, and the trajectory of this deepening upper layer is
fitted numerically with the curve indicated, which we use later in evaluating ∂Ĥ/∂t

in figure 5. As in figure 3(b), we see the characteristic upwelling curves of the filling
box process (Wells & Wettlaufer 2005) described by equation (15).

We deduce that Ri∗ρ is in the range of 21–27 by a best fit to equation (25) using the
observed values of tp and Riinρ from table 1 and plotted in figure 4. Such a critical value
is in good agreement with that predicted by equation (14). However, as expected, this
value is much larger than that found for two-dimensional vertical plumes as described
by equation (7). This is because, for the same buoyancy flux, density currents have
lower velocities than vertical two-dimensional plumes, and density currents remain
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(a)

(b)

(c)

(d )

Figure 2. Photos from experiment 5 at times (a) t = 55 s, (b) t = 1695 s (c) t = 5760 s and (d) t =
8000 s. The tank is 240 cm long and only the 90 cm closest to the 45◦ slope are shown. The
dotted red line in (a) shows the position at which data are taken to generate the times slices
of figure 3(b).
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Figure 3. Time slices of runs 1, 5 and 20 taken at a vertical line 70 cm from the dense current.
(a) Run 1. With a low initial buoyancy step so that Riinρ ∼ Ri∗ρ , the plume can initially penetrate
through the interface and the lower-layer depth increases with time. (b) Run 5, also shown
in figure 2. Because Riinρ 
 Ri∗ρ , the density current does not initially penetrate the interface,
and hence the upper layer shows characteristic filling-box dynamics, as indicated by plotting
(15) against the observed interface trajectories. A small fraction of the dense fluid penetrates
through the interface as early as 4000 to 5000 s, but the bulk of the density current intrudes
only between 6080 and 7485 s. (c) Run 20. A free plume leads to penetrative convection at the
interface and the upper layer deepens with time.
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Figure 4. Experimental observations of the time until penetration, tp , plotted against the
initial value of the Richardson number, Riinρ . The time until penetration through the interface
is simply the time it takes for the filling-box dynamics to reduce the upper interface contrast
so that the critical density difference is reached. This can be seen to increase linearly with
increasing Riinρ . The x-intercept of the line of best fit allows us to deduce that the value of Ri∗ρ
is between 21 and 27, and is in good agreement with the theoretical prediction of (14).

more dense because they can only entrain on one surface. The scatter in the data
plotted in figure 4 is due to the difficulty of determining a well-defined penetration
time. This is due to two effects. (i) Well before the bulk of the fluid penetrates, a
small amount of very dense fluid starts to leak through the interface (figure 3b).
This leakage is a result of the typical density current profiles (cf. Ellison & Turner
1959; Kneller, Bennett & McCaffrey 1999) which show greater velocity and density
gradients than the better mixed vertical plumes. Because of the greater variation in
the density within the current, there is a range of times over which penetration occurs,
leading to the larger error bars for the lower-angle slopes in figure 4. (ii) On steeper
slopes, greater than 60◦, a related effect occurs, with the lighter well-mixed outer
regions of the density current detraining at the interface after the bulk of the current
has penetrated through the interface. Because of the variation in density within a
turbulent plume or jet, part of the poorly mixed exterior of a jet has been observed
to detrain at the density interface by a number of workers (Kulkarni, Murphy &
Manohar 1993; Cotel & Breidenthal 1997; Monaghan et al. 1999; Baines 2001). For
cases where fluid leaks through the interface before penetration, or fluid detrains at
the interface after penetration, the details are sensitive to the gradients of velocity
and density within the current.

3.3. Deepening of the upper layer

One of our most important observations is the lack of appreciable penetrative
convection for density currents on slopes of less than 75◦. We attribute this to a
transition in the form of the hydraulic jump at the interface, from an undular bore to
a turbulent bore (see e.g. Chow 1959). A hydraulic jump will occur when the density
current on the slope changes from an entraining supercritical flow to a subcritical flow,
which occurs when the density current intrudes into the two-layer stratification. The
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form of the hydraulic jump will depend upon a Froude number of the density current,
which is defined by Baines (1995) as Fro = Ri−1/2

o = w/
√

g′b cos θ , (with Rio given by
equation (8)). For density currents on slopes between 10◦ and 90◦, Ellison & Turner
(1959) found that B/w3 = 0.23 ± 0.05. Combining this result with the conservation of
buoyancy, B = g′bw, implies that the Froude number increases with the slope angle as
Fro =(0.23 cos θ)−1/2. The value of Fro on slopes greater than 75◦ will be greater than
four, whereas experimental studies (Shin, Dalziel & Linden 2004; Marino, Thomas
& Linden 2005) have found that density currents intruding into a stratified interior
have a Froude number of about one. Hence, we expect that there will be a hydraulic
jump condition between the supercritical slope case and the slower moving intrusion.
Depending upon the initial value of Fro, this hydraulic jump may take the form
of an undular bore (with little mixing or entrainment) or a turbulent bore (with
significant mixing and entrainment). The relationship Fro = (0.23 cos θ)−1/2 implies
that the strong turbulent mixing we observed for slopes greater than 75◦ initially
occurs in the range from 60◦ to 75◦ and for Froude numbers of 2.9 <Fro < 4. The
fact that we observe such strong interfacial entrainment only at steep slopes where
Fro > 2.9 is consistent with Chow (1959). In his figure 15.2, he shows that for values of
1 < Fro < 1.7, the classic undular hydraulic jump occurs with very little wave-breaking,
whereas significant wave-breaking, and hence interfacial entrainment, starts to occur
only in the range 2.5 <Fro < 4.5. This explains why no mixing at the interface was
observed in our experiments on slopes of 30◦, 45◦ and 60◦ for which the values of Fro

were below 2.9. A similar sharp dependence of interfacial entrainment rates upon the
incident angle was seen in the related experiments of Cotel et al. (1997), who found
that the mixing efficiency of a jet striking a two-layer density interface was decreased
dramatically when the jet was tilted by 15◦ from the vertical (i.e. at 75◦).

The entrainment that occurs at the interface between the two layers, for steep slopes,
can be quantified in terms of an interfacial Froude number, Fint . The interfacial Froude
number (equation (21)) decreases with slope angle, but in the experiments we also
varied the initial values of ∆12, so that there were comparable values of Frint for both
low- and high-angle slopes, thus making it unlikely that the transition between 60◦

and 75◦ in the normalized interfacial entrainment was due to changes in Frint . The
observed normalized interfacial entrainment rate U ∗L/bw is plotted as a function of
Frint in figure 5. The main point of figure 5 is that the 11 experiments from vertical
plumes and density currents on 75◦ and 90◦ slopes, with a range of initial ∆12, exhibit
the same trend. The values of the normalized interfacial entrainment rate U ∗L/bw, the
entrained buoyancy flux B∗ and Frint were determined for the experiments in which
there was significant deepening of the upper layer (runs 10 to 20), using the observed
rate of change of depth ∂Ĥ/∂t and (24) in a similar manner to Kumagai (1984). The
position of the interface between the upper and lower layer is found by fitting curves
to the time-slice data, as shown in figure 3(c). The resulting normalized interfacial
entrainment rate U ∗L/bw is plotted as a function of Froude number in figure 5, and
can be seen to increase steeply with Froude number. There is considerable scatter
in the data and a larger range of Frint is desirable in order to seek a power-law
fit with any quantitative certainty, but in order to compare these results with other
measured interfacial entrainment rates found in the literature we have plotted a
power-law fit to the data in figure 5 of the form U ∗L/bw = Fr5

int . Such an increase
in entrainment rates with Froude number is consistent with previous experiments
where a point-source plume strikes a two-layer interface, i.e. Ching et al. (1993) who
measured U ∗L/bw ∼ Fr2

int , and Baines (1975) who measured U ∗L/bw ∼ Fr3
int . We have

also made estimates of the values of the entrained buoyancy flux, B∗ = L∆12U
∗. This
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Figure 5. Plot of the normalized interfacial entrainment ratio U ∗L/wb against the Froude
number, Frint of equation (21), for runs 10–20 where there is significant entrainment for 75◦

and 90◦ slopes and free plumes. The normalized interfacial entrainment rate is seen to increase
with Froude number in a manner consistent with U ∗L/bw ∝ Fr5

int .

was done by using (24) to estimate the time-dependent ∆12, and by calculating the
interfacial entrainment velocity from U ∗ = ∂Ĥ/∂t . There is considerable scatter in
the resulting data, but the maximum values of B∗/B are less than 0.25, comparable
with observations of Kumagai (1984) and consistent with the energetic arguments of
Manins & Turner (1978).

4. Application to the Arctic halocline
An important application of our work concerns the seasonal buoyancy forcing in

polar oceans owing to freezing and melting. In the present climate, warm salty water
enters the Arctic Ocean through the east side of Fram Strait, eventually returning
as a much colder and only slightly more fresh water-mass that flows southward
along the Greenland coast (Aagaard & Greisman 1975). Small variations in the
fresh-water export from the upper ocean through Fram Strait, which are coupled to
the seasonal ice cover, influence the stability of global thermohaline convection by
modulating deep-water formation in the North Atlantic (Roach, Aagaard & Carsey
1993; Morison, Aagaard & Steele 2000; Gascard et al. 2002; Proshutinsky, Bourke &
Mclaughlin 2002; Polyakov et al. 2003).

The principal features of the vertical structure of the Arctic Ocean are: (i) an
isothermal surface mixed layer with a seasonally dependent depth between 50 and
100 m and an isohaline surface layer with a depth of about 50 m; (ii) a distinct cold
halocline between approximately 50 and 200 m depth; (iii) Warm Atlantic water that
is centred between 300 and 500 m; and (iv) the abyss. We highlight three essential
issues. First, Nansen noted that the halocline waters could not simply be a linear
mixture of Atlantic and mixed-layer waters (e.g. Aagaard, Coachman & Carmack
1981; Carmack 2000). Secondly, shelf-derived waters and water masses associated with
central basin solidification and melting are involved in the formation and maintenance
of the halocline, but their relative roles, seasonal dependence and climatology remain
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Figure 6. A sketch of contributions to the dynamics of halocline maintenance. Oceanic
freezing and melting in the shelf regions of the Arctic Ocean, which constitute some 30 % of
the basin surface area, drives seasonal buoyancy forcing. In summer, melting sea-ice and river
input lead to a freshening of surface waters, creating a layer of stable stratification that acts
to suppress the vigour of winter convection, driven by ice formation and brine rejection on
shallow shelf regions; the resulting density current flows down the slope into the halocline. If
there is a distribution of cooling over the basin, there may be a convectively mixed surface-layer
over the deeper advective halocline. The upwelling of the denser stratified waters can keep the
surface mixed layer from deepening (Wells & Sherman 2001).

to be explained (Aagaard et al. 1981; Melling & Lewis 1982; Rudels, Anderson &
Jones 1996; Steele & Boyd 1998; Kikuchi, Hatakeyama & Morison 2004; Yamamoto-
Kawai, Tanaka & Pivovarov 2005). Thirdly, the salinity dependence of density makes
the Arctic halocline a pycnocline, and the salt stratification provides the stability
required to suppress the upward flux (due to stratified turbulence) of warm waters of
Atlantic origin. This stability is crucial to the persistence of a perennial sea-ice cover
because there is sufficient heat below the halocline to melt the ice.

The current hypotheses of the main contributions to the formation of halocline
water masses are: (a) the creation, and subsequent lateral advection into the basin,
of brine-enriched waters in broad shelf regions created by oceanic freezing (Aagaard
et al. 1981; Melling & Lewis 1982); (b) the melting of sea-ice in Fram Strait when
contacting warm waters of the West Spitsbergen current and subsequent advection
into the basin and convective interaction with the surface (Untersteiner 1988; Rudels
et al. 1996); and (c) the flow of Pacific waters into the Canadian basin through the
Bering Strait (Coachman & Aagaard 1988). Despite these compelling observations,
and the relevance of a number of numerical and theoretical modelling studies of dense
plume dynamics, with and without entrainment (e.g. Killworth 1977; Stigebrandt
1981; Björk 1989; Gawarkiewicz & Chapman 1995; Carmack & Chapman 2003),
there have been relatively few laboratory studies of direct relevance to the Arctic
halocline problem (e.g. Hunkins & Whitehead 1992; Whitehead 1993; Maxworthy &
Narimousa 1994; Cenedese et al. 2004). A conceptual picture of the formation and
stability of the Arctic halocline (figure 6) is in part a generalization of that put forth
by Aagaard et al. (1981).

The essential question is: what conditions are necessary for dense shelf waters
to intrude above the warmer Atlantic waters (i.e. seasonal stratification for a given
buoyancy forcing), and how sensitive is this flow to changes in the location and
magnitude of the seasonal buoyancy forcing? Equation (25), and hence the associated
figure 4, can be used to study the issue of penetrative ventilation as follows. For the
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geophysical setting we will use a value of Ri∗ρ =21 and we consider a halocline depth

of 150 m. We estimate a range of Riinρ by considering field data typical of both the
Eurasian and Canadian basins (Aagaard et al. 1981; Melling & Lewis 1982) where
0.0038 � ∆12 � 0.026 m s−2 and we take the most conservative estimate of the ave-
rage buoyancy flux which derives from the argument that the fresh-water residence
time of the Arctic Ocean, 10 years, is the same as that of the upper pycnocline
(Aagaard et al. 1981). Over the area of the Arctic of 9 × 106 km2 this gives a volume
flux of 2.8 × 106 m3 s−1 and with the weakest stratification observed by Aagaard
et al. (1981) of ∆12 = 0.0221 m s−2, we have a buoyancy flux per unit area (A) of
BA =8 × 10−9 m2 s−3. Because that flux is delivered to the halocline over a basin
scale L ≈ 1000 km and because B =BAA/L ≈ BAL we have B = 0.008 m3 s−3. Thus,
we find 56.2 � Riinρ � 97.5, from which the penetration time is 0.56 � tp � 1.2 years.
Therefore, under present day stratification and conservative estimates of buoyancy
forcing, it is clearly possible for gravity current penetration to occur over a time scale
commensurate with the seasonality of the forcing itself.

Finally, we note that (a) because ocean freezing persists for approximately six
months a year, our results indicate the possibility that penetration may occur during
a seasonal time scale, and (b) both the role of rotation and regionally specific
oceanographic effects will influence the detailed time scales of any penetration event.
Density currents will be influenced by topography and deflected to the right in the
Northern hemisphere by the Coriolis force, an effect nicely illustrated in the studies
by Chao & Shaw (2003) and Cenedese et al. (2004). The velocity of a rotating density
current is typically slower and no longer scales as (12), but rather it is determined
by a balance between buoyancy forces and bottom drag. Rotation has two direct
effects on the current density; for the current to fall the same vertical distance, the
trajectory is longer and the velocity, and hence the entrainment rate, are reduced.
The longer trajectory may balance the reduced entrainment so that the same total
entrainment per unit fall may occur (as assumed by Hughes & Griffiths 2006). The
entrainment dynamics of sub-critical density currents on low-angle slopes, where
bottom drag is important, are not well understood (see discussion in Cenedese et al.
2004; Wahlin & Cenedese 2006) so it is unclear whether, for these oceanographic
flows, the use of (10) necessarily implies a value of Eeq in the range from 0.08
to 0.1. We also note that extrapolation of equation (14) to the lower-angle slopes
typical of the ocean, implies values of Ri∗ρ less than 21. For example, using (14)
with C = 0.2 and θ = 5◦ gives Ri∗ρ = 11.88, and hence through (25) a longer time to
penetration. However, there are few experimental measurements of entrainment for
slopes below 5◦, so extrapolation to low-angle slopes to determine the exact numeric
value of Ri∗ρ is difficult. Finally, experiments and simulations on vertical convection
into rotating two-layer fluids show that penetration has ostensibly no Rossby-number
dependence (Narimousa 1996; Chapman 1997). However, in experiments of the type
presented here but in a rotating system, we find that rotation suppresses the mixing
and entrainment of density currents on a slope and hence reduces the value of tp
relative to the values found here. Moreover, during the rapid growth of sea-ice in
winter, the order of magnitude of the typical buoyancy forcing associated with brine
rejection is BA =10−7 m2 s−3, approximately an order of magnitude greater than the
averaged value used in our analysis. Thus, we interpret our estimates of penetration to
be conservative as regards their application to the Arctic, and we are currently trying
to clarify the most important processes of geophysical relevance through rotating
laboratory experiments where a dense current impinges a sharp density interface.
We conclude that the general mechanism of ventilation is supported by current
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oceanographic evidence and our result provides a fluid mechanical basis for the
viability of the phenomenon in the Arctic.

5. Conclusions
We have described the underlying theory and presented experimental results of

the long-term dynamics of two-dimensional density currents flowing into a two-layer
stratified basin. We find that a density current will penetrate the initial stratification
if the initial Richardson number, defined here as Riinρ = ∆in

12H/B2/3, is less than

Ri∗ρ = 21 − 27 for slopes between 30◦ and 90◦. Experimentally, we find that this result
is independent of slope angle, because the total entrainment of a density current
on a slope is the same as an equivalent vertical plume falling the same vertical
depth (Hughes & Griffiths 2006; Wells & Wettlaufer 2005). If the density current
does not initially penetrate the interface, then the density contrast between the two
layers reduces with time. The time scale for penetration of the interface is given
by tp =(Riinρ − Ri∗ρ)L/B1/3 and again does not depend upon the slope angle within
experimental uncertainty. A principal experimental observation is that there appears
to be no appreciable penetrative convection for density currents on slopes less than
75◦, even though the interfacial Froude numbers on a wide range of slopes are in the
same range. We attribute this transition in the vigour of the penetrative convection
to a transition in the form of the hydraulic jump at the point where the fast down-
slope density current transitions to a slower intruding current. In experiments with
low slopes, this hydraulic jump has the form an undular bore and there is little
entrainment at the interface, whereas with steep slopes and higher values of the
overall Froude number, the hydraulic jump has the form of a strongly entraining
turbulent bore.

Finally, the stability of the Arctic halocline, which presently insulates the sea-ice
from deeper warmer waters of Atlantic origin, can be understood in the context of
these experiments. The halocline waters originate from cold dense saline currents
driven by brine rejection into the shelf regions of the Arctic. If a density current
could penetrate through the interface it would gradually bring the warmer Atlantic
waters into contact with the surface sea-ice by a combination of upwelling, on a
slower filling-box time scale, and the erosion of the existing stratification, which on a
faster time scale allows the surface forcing to penetrate more deeply into the water
column. For a range of the present oceanographic conditions, we have used equation
(25) to estimate the penetration time scale, tp , and find 0.56 � tp � 1.2 years. Hence,
we find that gravity current penetration may transpire on a time scale of the order
of the seasonal buoyancy forcing.
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